

Language Models

- In general, we want to place a distribution over sentences
- Basic / classic solution: n-gram models

$$
P(w)=\prod_{i} P\left(w_{i} \mid w_{i-1} \ldots w_{i-k}\right)
$$

- Question: how to estimate conditional probabilities?

$$
P\left(w \mid w^{\prime}\right)=
$$

- Problems:
- Known words in unseen contexts
- Entirely unknown words
- Many systems ignore this - why?
- Often just lump all new words into a single UNK type

Puzzle: Unknown Words

- Imagine we look at 1 M words of text
- We'll see many thousands of word types
- Some will be frequent, others rare
- Could turn into an empirical $P(w)$
- Questions:
- What fraction of the next 1 M will be new words?
- How many total word types exist?

Smoothing: Add-One, Etc.

- With a uniform prior, get estimates of the form

$$
P_{\mathrm{add}-\delta}(x)=\frac{c(x)+\delta}{\sum_{x^{\prime}}\left(c\left(x^{\prime}\right)+\delta\right)}
$$

- Add-one smoothing especially often talked about
- For a bigram distribution, can use a prior centered on the empirical unigram:

$$
P_{d i r}\left(w \mid w_{-1}\right)=\frac{c\left(w_{-1}, w\right)+k \hat{P}(w)}{\left(\sum_{w^{\prime}} c\left(w_{-1}, w^{\prime}\right)\right)+k}
$$

- Can consider hierarchical formulations: trigram is recursively centered on smoothed bigram estimate, etc [MacKay and Peto, 94]
- Basic idea of conjugacy is convenient: prior shape shows up as pseudo-counts
- Problem: works quite poorly!

Linear Interpolation

- Problem: $\hat{P}\left(w \mid w_{-1}, w_{-2}\right)$ is supported by few counts
- Classic solution: mixtures of related, denser histories, e.g.:

$$
\lambda \widehat{P}\left(w \mid w_{-1}, w_{-2}\right)+\lambda^{\prime} \widehat{P}\left(w \mid w_{-1}\right)+\lambda^{\prime \prime} \widehat{P}(w)
$$

- The mixture approach tends to work better than the Dirichlet prior approach for several reasons
- Can flexibly include multiple back-off contexts, not just a chain
- Often multiple weights, depending on bucketed counts
- Good ways of learning the mixture weights with EM (later)
- Not entirely clear why it works so much better
- All the details you could ever want: [Chen and Goodman, 98]

Held-Out Data

- Important tool for calibrating how models generalize:

- Set a small number of hyperparameters that control the degree of smoothing by maximizing the (log-)likelihood of held-out data
- Can use any optimization technique (line search or EM usually easiest)
- Examples:

$$
P_{d i r}\left(w \mid w_{-1}, k\right)=\frac{c\left(w_{-1}, w\right)+k \hat{P}(w)}{\left(\sum_{w^{\prime}} c\left(w_{-1}, w^{\prime}\right)\right)+k}
$$

$P_{\text {lin }}\left(w \mid w_{-1}, \lambda, \lambda^{\prime}, \lambda^{\prime \prime}\right)=\lambda \hat{P}\left(w \mid w_{-1}, w_{-2}\right)+\lambda^{\prime} \hat{P}\left(w \mid w_{-1}\right)+\lambda^{\prime \prime} \hat{P}(w)$

Held-Out Reweighting

- What's wrong with unigram-prior smoothing?
- Let's look at some real bigram counts [Church and Gale 91]:

Count in 22M Words	Actual c* (Next 22M)	Add-one's c*	Add-0.0000027's c*
1	0.448	$2 / 7 \mathrm{e}-10$	~ 1
2	1.25	$3 / 7 \mathrm{e}-10$	~ 2
3	2.24	$4 / 7 \mathrm{e}-10$	~ 3
4	3.23	$5 / 7 \mathrm{e}-10$	\sim
5	4.21	$6 / 7 \mathrm{e}-10$	~ 5

Mass on New	9.2%	$\sim 100 \%$	9.2%
Ratio of $2 / 1$	2.8	1.5	~ 2

- Big things to notice:
- Add-one vastly overestimates the fraction of new bigrams
- Add- 0.0000027 vastly underestimates the ratio $2^{*} / 1^{*}$
- One solution: use held-out data to predict the map of c to c*

Good-Turing Reweighting I

- Idea: leave-one-out validation
- N_{k} : number of types which occur k times in the entire corpus
- Take each of the c tokens out of corpus in turn
- c "training" sets of size c-1, "held-out" of size 1
- How many held-out tokens are unseen in
training?
- N_{1}
- How many held-out tokens are seen k times in training? - $(k+1) N_{k+1}$
- There are N_{k} words with training count k
- Each should occur with expected count
- (k+1) $\mathrm{N}_{\mathrm{k}+1} / \mathrm{N}_{\mathrm{k}}$
- Each should occur with probability: - $(\mathrm{k}+1) \mathrm{N}_{\mathrm{k}+1} /\left(\mathrm{cN}_{\mathrm{k}}\right)$

Good-Turing Reweighting III

- Hypothesis: counts of k should be $\mathrm{k}^{*}=(\mathrm{k}+1) \mathrm{N}_{\mathrm{k}+1} / \mathrm{N}_{\mathrm{k}}$

Count in 22M Words	Actual c* (Next 22M)	GT's c* *
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24
Mass on New	9.2%	9.2%

- Katz Smoothing
- Use GT discounted bigram counts (roughly - Katz left large counts alone)
- Whatever mass is left goes to empirical unigram

$$
P_{\mathrm{katz}}\left(w \mid w^{\prime}\right)=\frac{c^{*}\left(w^{\prime}, w\right)}{c\left(w^{\prime}\right)}+\alpha\left(w^{\prime}\right) \hat{P}(w)
$$

Kneser-Ney: Discounting

- Kneser-Ney smoothing: very successful but slightly ad hoc estimator
- Idea: observed n-grams occur more in training than they will later:

Count in 22M Words	Avg in Next 22M	Good-Turing c*
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24

- Absolute Discounting
- Save ourselves some time and just subtract 0.75 (or some d)
- Maybe have a separate value of d for very low counts

$$
P_{\mathrm{ad}}\left(w \mid w^{\prime}\right)=\frac{c\left(w^{\prime}, w\right)-d}{c\left(w^{\prime}\right)}+\alpha\left(w^{\prime}\right) \hat{P}(w)
$$

Kneser-Ney: Continuation

- Something's been very broken all this time
- Shannon game: There was an unexpected \qquad ?
- delay?
- Francisco?
- "Francisco" is more common than "delay"
- ... but "Francisco" always follows "San"
- Solution: Kneser-Ney smoothing
- In the back-off model, we don't want the probability of w as a unigram
- Instead, want the probability that w is allowed in this novel context
- For each word, count the number of bigram types it completes

$$
P_{\mathrm{C}}(w) \propto\left|w^{\prime}: c\left(w^{\prime}, w\right)>0\right|
$$

Kneser-Ney

- Kneser-Ney smoothing combines these two ideas - Absolute discounting

$$
P\left(w \mid w^{\prime}\right)=\frac{c\left(w^{\prime}, w\right)-d}{c\left(w^{\prime}\right)}+\alpha\left(w^{\prime}\right) P^{\prime}(w)
$$

- Lower order models take a special form

$$
P_{c}(w) \propto\left|w^{\prime}: c\left(w^{\prime}, w\right)>0\right|
$$

- KN smoothing repeatedly proven effective
- But we've never been quite sure why
- And therefore never known how to make it better
- [Teh, 2006] shows KN smoothing is a kind of approximate inference in a hierarchical Pitman-Yor process (and better approximations are superior to basic KN)

What Actually Works?

- Trigrams:
- Unigrams, bigrams too little
context
Trigrams much better (when there's enough data)
4-, 5 -grams often not worth the cost (which is more than it seems, due to how speech recognizers are constructed
- Note: for MT, $5+$ often used
- Good-Turing-like methods for
count adjustment
Absolute discounting, Good Turing, held-out estimation, Witten-Bell
- Kneser-Ney equalization for lower-order models
- See [Chen+Goodman]
reading for tons of graphs.

Beyond N-Gram LMs

- Lots of ideas we won't have time to discuss:
- Caching models: recent words more likely to appear again

Trigger models: recent words trigger other words

- Topic models
- A few recent ideas
- Syntactic models: use tree models to capture long-distance syntactic effects [Chelba and Jelinek, 98]
- Discriminative models: set n -gram weights to improve final task accuracy rather than fit training set density [Roark, 05, for ASR; Liang et. al., 06, for MT]
- Structural zeros: some n-grams are syntactically forbidden, keep estimates at zero [Mohri and Roark, 06]
- Bayesian document and IR models [Daume 06]

Overview

- So far: language models give P(s)
- Help model fluency for various noisy-channel processes (MT, ASR, etc.)
- N-gram models don't represent any deep variables involved in language structure or meaning
- Usually we want to know something about the input other than how likely it is (syntax, semantics, topic, etc)
- Next: Naïve-Bayes models
- We introduce a single new global variable
- Still a very simplistic model family
- Lets us model hidden properties of text, but only very non-local ones..
- In particular, we can only model properties which are largely invariant to word order (like topic)

Text Categorization

- Want to classify documents into broad semantic topics (e.g. politics sports, etc.)
Obama is hoping to rally support California will open the 2009 for his $\$ 825$ billion stimulus package on the eve of a crucial House vote. Republicans have expressed reservations about the proposal, calling for more tax cuts and less spending. GOP representatives seemed doubtful that any deals would be made.
season at home against Maryland Sept. 5 and will play a total of six games in Memorial Stadium in the final football schedule announced by the Pacific-10 Conference Friday. The original schedule called for 12 games over 12 weekends.
- Which one is the politics document? (And how much deep processing did that decision take?)
- One approach: bag-of-words and Naïve-Bayes models
- Another approach later.
- Usually begin with a labeled corpus containing examples of each class

$$
P\left(w_{1}, w_{2}, \ldots w_{n}\right)=\prod P\left(w_{i}\right)
$$

Using NB for Classification

- We have a joint model of topics and documents

$$
P\left(c, w_{1}, w_{2}, \ldots w_{n}\right)=P(c) \prod P\left(w_{i} \mid c\right)
$$

- Gives posterior likelihood of topic given a document

$$
P\left(c \mid w_{1}, w_{2}, \ldots w_{n}\right)=\frac{P(c) \prod_{i} P\left(w_{i} \mid c\right)}{\sum_{c^{\prime}}\left[P\left(c^{\prime}\right) \prod_{i} P\left(w_{i} \mid c^{\prime}\right)\right]}
$$

- What about totally unknown words?
- Can work shockingly well for textcat (especially in the wild)
- How can unigram models be so terrible for language modeling, but class-conditional
unigram models work for textcat?
- Numerical/ speed issues
- How about NB for spam detection?

(Non-)Independence Issues

- Mild Non-Independence
- Evidence all points in the right direction
- Observations just not entirely independent
- Results

- Inflated Confidence
- Deflated Priors
- What to do? Boost priors or attenuate evidence

$$
P\left(c, w_{1}, w_{2}, \ldots w_{n}\right)^{\prime \prime}=" P(c)^{\text {boost }>1} \prod P\left(w_{i} \mid c\right)^{\text {boost }<1}
$$

- Severe Non-Independence
- Words viewed independently are misleading
- Interactions have to be modeled

- What to do?
. Change your model!

Language Identification

- How can we tell what language a document is in?

The 38th Parliament will meet on
Monday, October 4, 2004, at 11:00 a.m
The first item of business will be the
election of the Speaker of the House of
Commons. Her Excellency the Governor
General will open the First Session of
the 38th Parliament on October 5, 2004
with a Speech from the Throne.
ade legislature se réunira à 11 heures le
undi 4 octobre 2004, et la première affaire
I l'ordre du jour sera l'élection du président
de la Chambre des communes. Son
Excellence la Gouverneure générale
ouvrira la première session de la 38 e
égislature avec un discours du Trône le mardi 5 octobre 2004.

- How to tell the French from the English?
- Treat it as word-level textcat?
- Overkill, and requires a lot of training data
- You don't actually need to know about words!

Patto di stabilità e di crescita
- Option: build a character-level language model

Class-Conditional LMs

- Can add a topic variable to other language models

$$
P\left(c, w_{1}, w_{2}, \ldots w_{n}\right)=P(c) \prod P\left(w_{i} \mid w_{i-1}, c\right)
$$

- Could be characters instead of words, used for language ID (HW2)
- Could sum out the topic variable and use as a language model
- How might a class-conditional n-gram language model behave differently from a standard n-gram model?

